Weaver mutant mouse cerebellar granule cells respond normally to chronic depolarization

Research output: Contribution to journalJournal articleResearchpeer-review

We studied the effects of chronic K(+)-induced membrane depolarization and treatment with N-methyl-D-aspartate (NMDA) on cerebellar granule cells (CGCs) from weaver mutant mice and non-weaver litter-mates. The weaver mutation is a Gly-to-Ser substitution in a conserved region of the Girk2 G protein-coupled inward rectifying potassium channel [Patil N., Cox D. R., Bhat D., Faham M., Myers R. M. and Peterson A. S. (1995) Nature Genet. 11, 126-129] which induces early death of CGCs. The biochemical differentiation of CGCs was estimated as the rate of 2-deoxy-D-glucose accumulation and the expression of neural cell adhesion molecule (NCAM). High (25 mM) K+ ion concentration or treatment with NMDA greatly promoted the biochemical differentiation of both weaver mutant and non-weaver litter-mate mouse CGCs. In contrast to the marked effect on biochemical differentiation in both weaver and non-weaver mice CGSs, chronic high K+ treatment only had limited effect on survival. The survival of weaver mutant mouse CGCs in medium containing 5 mM K+ ions was very low, only 20% of the plated cells surviving at 7 days after plating, as opposed to the 50% for non-weaver CGCs. Chronic high K+ treatment improved the relative survival of weaver mutant mouse CGCs 1.6 2.2-fold and that of non-weaver CGCs 1.2-1.4-fold; the same number of CGCs (about 20% of the plated cells) were rescued by high K+ in both types of culture. The findings indicate that, in culture weaver mutant mouse, CGCs have a normal response to membrane depolarization and that the normal function of the Girk2 potassium channel is not critical for the survival of differentiated CGCs.
Original languageEnglish
JournalInternational Journal of Developmental Neuroscience
Volume15
Issue number2
Pages (from-to)155-62
Number of pages7
ISSN0736-5748
Publication statusPublished - 1997

Bibliographical note

Keywords: Animals; Cell Aging; Cell Differentiation; Cell Survival; Cells, Cultured; Cerebellum; Deoxyglucose; Electrophysiology; Mice; Mice, Neurologic Mutants; N-Methylaspartate; Neural Cell Adhesion Molecules; Potassium; Reference Values; Time Factors

ID: 230158