Exploring Enzymatic Hydrolysis of Urine Samples for Investigation of Drugs Associated with Drug-Facilitated Sexual Assault

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 2 MB, PDF-dokument

Analyzing urine is common in drug-facilitated sexual assault cases if the analysis of blood is not optimal. The efficient enzymatic pretreatment of urine is important for cleaving glucuronides and improving the detection of the parent drug. The aim was to investigate the efficiency of three β-glucuronidases on eleven glucuronides relevant to DFSA at different incubation periods and temperatures. Human drug-free urine was fortified with 11 glucuronides, hydrolyzed with either β-glucuronidase/arylsulfatase (Helix Pomatia), recombinant β-glucuronidase B-One™ or recombinant β-glucuronidase BGTurbo™ and incubated for 5, 10, 60 min, 18 h and 24 h at 20 °C/40 °C/55 °C before UHPLC–MS/MS analysis. The stability of 141 drugs and metabolites relevant to DFSA was investigated by incubating fortified urine under the same hydrolysis conditions. B-One™ showed efficient hydrolysis (>90%) of most glucuronides in 5 min at all temperatures, while BGTurbo™ showed a similar efficiency (>90%), but the optimal temperature (20–55 °C) and incubation time (5–60 min) varied among analytes. The β-glucuronidase/arylsulfatase had the lowest efficiency and required the longest incubation (24 h) at 40–55 °C. The stability of 99% of 141 drugs and metabolites was not affected by incubation at 20–55 °C for 24 h. Recombinant enzymes show promising results for the simple and efficient hydrolysis of a broad panel of glucuronides relevant for DFSA.

OriginalsprogEngelsk
Artikelnummer13
TidsskriftPharmaceuticals
Vol/bind17
Udgave nummer1
Antal sider11
ISSN1424-8247
DOI
StatusUdgivet - 2024

Bibliografisk note

Funding Information:
This product is financially supported by the Danish Victims Fund (grant number 20-610-0092). The authors are responsible for the execution, content, and results of the product. Assessments and views that appear belong to the authors and are not necessarily shared by the Council of the Danish Victims Fund.

Publisher Copyright:
© 2023 by the authors.

ID: 381565393